
Adam D. Scott

Building Web Apps
that Respect a User’s
Privacy and Security

http://oreil.ly/webdeve

Adam D. Scott

Building Web Apps that
Respect a User’s Privacy

and Security

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95838-4

[LSI]

Building Web Apps that Respect a User’s Privacy and Security
by Adam D. Scott

Copyright © 2017 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Shiny Kalapurakkel
Copyeditor: Rachel Head
Proofreader: Eliahu Sussman

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2016: First Edition

Revision History for the First Edition
2016-11-18: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Web
Apps that Respect a User’s Privacy and Security, the cover image, and related trade
dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Preface. vii

1. Introduction. 1
Our Responsibility 3

2. Respecting User Privacy. 5
How Users Are Tracked 6
What Does Your Browser Know About You? 7
Do Not Track 8
Web Analytics 11
De-identification 12
User Consent and Awareness 13
Further Reading 16

3. Encrypting User Connections with HTTPS. 17
How HTTPS Works 18
Why Use HTTPS 21
Implementing HTTPS 23
Other Considerations 25
Conclusion 27
Further Reading 27

4. Securing User Data. 29
Building on a Strong Foundation 30
OWASP Top 10 32
Secure User Authentication 32
Encrypting User Data 39

v

Sanitizing and Validating User Input 40
Cross-Site Request Forgery Attacks 41
Security Headers 42
Security Disclosures and Bug Bounty Programs 45
Conclusion 45
Further Reading 46

5. Preserving User Data. 47
Data Ownership 48
Deleting User Data 49
Archiving and Graceful Shutdown 50
Further Reading 51

6. Conclusion. 53

vi | Table of Contents

Preface

As web developers, we are responsible for shaping the experiences of
users’ online lives. By making ethical, user-centered choices, we cre‐
ate a better web for everyone. The Ethical Web Development series
aims to take a look at the ethical issues of web development.

With this in mind, I’ve attempted to divide the ethical issues of web
development into four core principles:

1. Web applications should work for everyone.
2. Web applications should work everywhere.
3. Web applications should respect a user’s privacy and security.
4. Web developers should be considerate of their peers.

The first three are all about making ethical decisions for the users of
our sites and applications. When we build web applications, we are
making decisions for others, often unknowingly to those users.

The fourth principle concerns how we interact with others in our
industry. Though the media often presents the image of a lone
hacker toiling away in a dim and dusty basement, the work we do is
quite social and relies on a vast web dependent on the work of oth‐
ers.

What Are Ethics?
If we’re going to discuss the ethics of web development, we first need
to establish a common understanding of how we apply the term eth‐
ics. The study of ethics falls into four categories:

vii

Meta-ethics
An attempt to understand the underlying questions of ethics
and morality

Descriptive ethics
The study and research of people’s beliefs

Normative ethics
The study of ethical action and creation of standards of right
and wrong

Applied ethics
The analysis of ethical issues, such as business ethics, environ‐
mental ethics, and social morality

For our purposes, we will do our best to determine a normative set
of ethical standards as applied to web development, and then take
an applied ethics approach.

Within normative ethical theory, there is the idea of consequential‐
ism, which argues that the ethical value of an action is based on its
result. In short, the consequences of doing something become the
standard of right or wrong. One form of consequentialism, utilitari‐
anism, states that an action is right if it leads to the most happiness,
or well-being, for the greatest number of people. This utilitarian
approach is the framework I’ve chosen to use as we explore the eth‐
ics of web development.

Whew! We fell down a deep, dark hole of philosophical terminology,
but I think it all boils down to this:

Make choices that have the most positive effect for the largest number
of people.

Professional Ethics
Many professions have a standard expectation of behavior. These
may be legally mandated or a social norm, but often take the form of
a code of ethics that details conventions, standards, and expectations
of those who practice the profession. The idea of a professional code
of ethics can be traced back to the Hippocratic oath, which was writ‐
ten for medical professionals during the fifth century BC (see
Figure P-1). Today, medical schools continue to administer the Hip‐
pocratic or a similar professional oath.

viii | Preface

Figure P-1. A fragment of the Hippocratic oath from the third century
(image courtesy of Wikimedia Commons)

Preface | ix

http://bit.ly/hipp-pic

In the book Thinking Like an Engineer (Princeton University Press),
Michael Davis says a code of conduct for professionals:

[P]rescribes how professionals are to pursue their common ideal so
that each may do the best she can at a minimal cost to herself and
those she cares about…The code is to protect each professional
from certain pressures (for example, the pressure to cut corners to
save money) by making it reasonably likely (and more likely then
otherwise) that most other members of the profession will not take
advantage of her good conduct. A code is a solution to a coordina‐
tion problem.

My hope is that this report will help inspire a code of ethics for web
developers, guiding our work in a way that is professional and inclu‐
sive.

The approaches I’ve laid out are merely my take on how web devel‐
opment can provide the greatest happiness for the greatest number
of people. These approaches are likely to evolve as technology
changes and may be unique for many development situations. I
invite you to read my practical application of these ideas and hope
that you apply them in some fashion to your own work.

This series is a work in progress, and I invite you to contribute. To
learn more, visit the Ethical Web Development website.

Intended Audience
This title, like others in the Ethical Web Development series, is
intended for web developers and web development team decision
makers who are interested in exploring the ethical boundaries of
web development. I assume a basic understanding of fundamental
web development topics such as HTML, CSS, JavaScript, and HTTP.
Despite this assumption, I’ve done my best to describe these topics
in a way that is approachable and understandable.

x | Preface

http://bit.ly/think_engineer
https://ethicalweb.org

CHAPTER 1

Introduction

All human beings have three lives: public, private, and secret.
—Gabriel García Márquez, Gabriel García Márquez: A Life

If only the “controversial” stuff is private, then privacy is itself sus‐
picious. Thus, privacy should be on by default.

—Tim Bray

We live more and more of our lives digitally. We consistently create
significant portions of our social, health, financial, and work data
through web services. We then link that data together by connecting
accounts and permitting the services that we use to track the other
sites we visit, trusting these sites implicitly. Even our use of search
engines can predict patterns and provide insights into our health
and personalities. In 2016 John Paparrizos MSc, Ryen W. White
PhD, and Eric Horvitz MD PhD published a study in which they
were able to use anonymized Bing search queries to predict diagno‐
ses of pancreatic cancer.

In the article “With Great Data Comes Great Responsibility,” Pascal
Raabe (Paz) eloquently describes how our digital data represents our
lives:

We’re now producing more data on a daily basis than through all of
history. The digital traces we’re leaving behind with every click,
every tweet and even every step that we make create a time
machine for ourselves. These traces of our existence form the photo
album of a lifetime. We don’t have to rely on memory alone but can
turn to technology to augment our biological memories and virtu‐
ally remember everything.

1

http://bit.ly/2gahuKG
http://bit.ly/2fSZm8T
http://bit.ly/2fE4xEy

1 As detected by the Privacy Badger browser plug-in

In light of how much data we produce, the security of our digital
information has become a point of concern among many people.
Web surveillance, corporate tracking, and data leaks are now com‐
mon leading news stories. In a 2016 Pew Research survey on the
state of privacy in the US, it was found that few Americans are con‐
fident in the security or privacy of our data:

Americans express a consistent lack of confidence about the secu‐
rity of everyday communication channels and the organizations
that control them – particularly when it comes to the use of online
tools. And they exhibited a deep lack of faith in organizations of all
kinds, public or private, in protecting the personal information
they collect. Only tiny minorities say they are “very confident” that
the records maintained by these organizations will remain private
and secure.

In 2015, author Walter Kirn wrote about the state of modern sur‐
veillance for the Atlantic magazine in an article titled “If You’re Not
Paranoid, You’re Crazy.” When I viewed the online version of the
article, hosted on the Atlantic’s website, the Privacy Badger browser
plug-in detected 17 user trackers on the page1 (upper right in
Figure 1-1). Even when we are discussing tracking, we are creating
data that is being tracked.

2 | Chapter 1: Introduction

http://pewrsr.ch/2daWMH7
http://theatln.tc/2fEaK3q
http://theatln.tc/2fEaK3q
https://www.eff.org/privacybadger
https://www.eff.org/privacybadger

Figure 1-1. Screenshot from the Atlantic’s website showing the number
of trackers present on the page

Our Responsibility
As web developers, we are the first line of defense in protecting our
users’ data and privacy. In this report, we will explore some ways in
which we can work to maintain the privacy and security of our
users’ digital information. The four main concepts we’ll cover are:

1. Respecting user privacy settings
2. Encrypting user connections with our sites
3. Working to ensure the security of our users’ information
4. Providing a means for users to export their data

If we define ethics as “making choices that have the most positive
effect for the largest number of people,” putting in place strong secu‐
rity protections and placing privacy and data control in the hands of
our users can be considered the ethical approach. By taking extra
care to respect our users’ privacy and security, we are showing
greater commitment to their needs and desires.

Our Responsibility | 3

CHAPTER 2

Respecting User Privacy

This has happened to all of us: one evening we’re shopping for
something mundane like new bed sheets by reading reviews and
browsing a few online retailers, and the next time we open one of
our favorite websites up pops an ad for bed linens. What’s going on
here? Even for those of us who spend our days (and nights) develop‐
ing for the web, this can be confounding. How does the site have
access to our shopping habits? And just how much does it know
about us?

This feeling of helplessness is not uncommon. According to the Pew
Research Center, 91% of American adults “agree or strongly agree
that consumers have lost control of how personal information is col‐
lected and used by companies.” Many users may be comfortable giv‐
ing away information in exchange for products and services, but
more often than not they don’t have a clear understanding of the
depth and breadth of that information. Meanwhile, advertising net‐
works and social media sites have bits of code that are spread across
the web, tracking users between sites.

As web developers, how can we work to maintain the privacy of our
users? In this chapter, we’ll look at how web tracking works and
ways in which we can hand greater privacy control back to our
users.

5

http://pewrsr.ch/2daWMH7
http://pewrsr.ch/2daWMH7

How Users Are Tracked
As users browse the web, they are being tracked; and as web devel‐
opers, we are often enabling and supporting that surveillance. This
isn’t a case of tinfoil hat paranoia: we’re introducing the code of ad
networks to support our work, adding social media share buttons
that allow users to easily share our sites’ content, or using analytics
software to help us better understand the user experience. Websites
track users’ behavior with the intention of providing them with a
more unique experience. While this may seem harmless or well
intentioned, it is typically done without the knowledge or permis‐
sion of the end user.

The simplest way that web tracking works is that a user visits a site
that installs a cookie from a third party. When the user then visits
another site with the same third-party tracker, the tracker is notified
(see Figure 2-1). This allows the third party to build a unique user
profile.

6 | Chapter 2: Respecting User Privacy

Figure 2-1. Cookies from third parties allow users to be tracked around
the web

The intention of this tracking is typically to provide more targeted
services, advertising, or products. However, the things we buy, the
news we read, the politics we support, and our religious beliefs are
often embedded into our browsing history. To many, gathering this
knowledge without explicit permission feels intrusive.

What Does Your Browser Know About You?
Those aware of user tracking may take a few steps to beat trackers at
their own game. Ad blockers such as uBlock Origin block advertise‐
ments and third-party advertising trackers. Other browser exten‐
sions such as Privacy Badger and Ghostery attempt to block all
third-party beacons from any source. However, even with tools like
these, sites may be able to track users based on the unique footprint
their browser leaves behind. In fact, according to the W3C slide
deck “Is Preventing Browser Fingerprinting a Lost Cause?” the irony

What Does Your Browser Know About You? | 7

https://github.com/gorhill/uBlock/
https://www.eff.org/privacybadger
https://www.ghostery.com/
http://bit.ly/2eLZtjS

of using these tools is that “fine-grained settings or incomplete tools
used by a limited population can make users of these settings and
tools easier to track.”

Browsers can easily detect the user’s IP address, user agent, location,
browser plug-ins, hardware, and even battery level. Web developer
Robin Linus developed the site What Every Browser Knows About
You to show off the level of detail available to developers and site
owners. Additionally, the tools Am I Unique? and Panopticlick offer
quick overviews of how unique your browser fingerprint is.

Online Privacy Documentary
If you’re interested in learning more about privacy and user track‐
ing, I highly recommend the online documentary, “Do Not Track.”

Do Not Track
With this information about the ways in which users can be tracked
in mind, how can we, as web developers, advocate for our users’ pri‐
vacy? My belief is that the first step is to respect the Do Not Track
(DNT) browser setting, which allows users to specify a preference to
not be tracked by the sites they visit. When a user has enabled the
Do Not Track setting in her browser, the browser responds with the
HTTP header field DNT.

According to the Electronic Frontier Foundation, Do Not Track
boils down to sites agreeing not to collect personally identifiable
information through methods such as cookies and fingerprinting, as
well as agreeing not to retain individual user browser data beyond
10 days. The noted exceptions to this policy are when a site is legally
responsible for maintaining this information, when the information
is needed to complete a transaction, or if a user has given explicit
consent.

With Do Not Track enabled, browsers send an HTTP header
response with a DNT value of 1. The following is a sample header
response, which includes a DNT value:

8 | Chapter 2: Respecting User Privacy

http://webkay.robinlinus.com/
http://webkay.robinlinus.com/
https://amiunique.org/
https://panopticlick.eff.org
https://episode1.donottrack-doc.com/
http://bit.ly/2fNnkP3
http://bit.ly/2fDkWux

Host: "www.example.com"
Accept: "text/html,application/xhtml+xml,
 application/xml;q=0.9,*/*;q=0.8"
Accept-Language: "en-US,en;q=0.5"
Accept-Encoding: "gzip, deflate, br"
DNT: "1"

Do Not Track does not automatically disable tracking in a user’s
browser. Instead, as developers, we are responsible for appropriately
handling this user request in our applications.

Enabling Do Not Track
If you are interested in enabling Do Not Track in your browser, or
would like to direct others to do so, the site All About Do Not
Track has helpful guides for enabling the setting for a range of
desktop and mobile browsers.

Detecting Do Not Track
We can easily detect and respond to Do Not Track on the client side
of our applications in JavaScript by using the navigator.doNot
Track property. This will return a value of 1 for any user who has
enabled Do Not Track, while returning 0 for a user who has opted in
to tracking and unspecified for users who have not enabled the set‐
ting.

For example, we could detect the Do Not Track setting and avoid
setting a cookie in a user’s browser as follows:

// store user Do Not Track setting as a variable
var dnt = navigator.doNotTrack;

if (dnt !== 1) {
 // set cookie only if DNT not enabled
 document.cookie = 'example';
}

The site DoNotTrack.us, created and maintained by Stanford and
Princeton researchers Jonathan Mayer and Arvind Narayanan, help‐
fully offers web server configurations and templates for web applica‐
tion frameworks in ASP, Java, Perl, PHP, and Django.

Here is the recommended code when working with the Django
framework, which offers a good example for any framework or lan‐
guage:

Do Not Track | 9

https://allaboutdnt.com/
https://allaboutdnt.com/
http://donottrack.us/

DoNotTrackHeader = "DNT"
DoNotTrackValue = "1"

pyHeader = "HTTP_" + DoNotTrackHeader.replace("-", "_").upper()

request is an HttpRequest
if (pyHeader in request.META) and
 (request.META[pyHeader] == DoNotTrackValue):
 # Do Not Track is enabled
else:
 # Do Not Track is not enabled

Since DoNotTrack.us does not offer a Node.js example of detecting
Do Not Track, here is a simple HTTP server that will check for the
DNT header response from a user’s browser:

var http = require('http');

http.createServer(function (req, res) {

 var dnt = req.headers.dnt === '1' || false;

 if (dnt) {
 // Do Not Track is enabled
 } else {;
 // Do Not Track is not enabled
 }

 res.end();
}).listen(3000);

Additionally, the npm package tinfoilhat offers an interface for
detecting the Do Not Track setting in Node and executing a callback
based on the user’s setting.

Based on these examples, we can see that detecting a user’s Do Not
Track setting is relatively straightforward. Once we have taken this
important first step, though, how do we handle Do Not Track
requests?

Respecting Do Not Track
The Mozilla Developer Network helpfully offers DNT case stud‐
ies and the site DoNotTrack.us provides “The Do Not Track Cook‐
book,” which explores a number of Do Not Track usage scenarios.
The examples include practical applications of Do Not Track for
advertising companies, technology providers, media companies, and
software companies.

10 | Chapter 2: Respecting User Privacy

http://bit.ly/2fScs31
https://mzl.la/2fDjKHM
https://mzl.la/2fDjKHM
http://donottrack.us/cookbook/
http://donottrack.us/cookbook/

Sites that Respect Do Not Track
Some well-known social sites have taken the lead on implementing
Do Not Track. Twitter supports Do Not Track by disabling tailored
suggestions and tailored ads when a user has the setting enabled.
However, it’s worth noting that Twitter does not disable analytic
tracking or third-party advertising tracking that uses Twitter data
across the web. Pinterest also supports Do Not Track, and according
to the site’s privacy policy a user with Do Not Track enabled is opted
out of Pinterest’s personalization feature, which tracks users around
the web in order to provide further customization of Pinterest con‐
tent.

Medium.com has a clear and effective Do Not Track policy. When
users with Do Not Track enabled log in, they are presented with this
message:

You have Do Not Track enabled, or are browsing privately. Medium
respects your request for privacy: to read in stealth mode, stay log‐
ged out. While you are signed in, we collect some information
about your interactions with the site in order to personalize your
experience, offer suggested reading, and connect you with your
network. More details can be found here.

Medium also states that it does not track users across other websites
around the web. This policy is clear and consistent, providing a
strong example of how a successful site can respect a user’s Do Not
Track setting.

The site DoNotTrack.us offers a list of companies honoring Do Not
Track, including advertising companies, analytics services, data pro‐
viders, and more. Unfortunately, this list appears to be incomplete
and outdated, but it offers a good jumping-off point for exploring
exemplars across a range of industries.

Web Analytics
One of the biggest challenges of handling user privacy is determin‐
ing best practices for web analytics. By definition, the goal of web
analytics is to track users, though the aim is typically to better
understand how our sites are used so that we can continually
improve them and adapt them to user needs.

To protect user privacy, when using analytics we should ensure that
our analytics provider anonymizes our users, limits tracking cookies

Web Analytics | 11

http://bit.ly/2fS9VFF
http://bit.ly/2ffHT8v
http://bit.ly/2ffLWBT
http://bit.ly/2fDn6dy
http://donottrack.us/implementations
http://donottrack.us/implementations

to our domain, and does not share user information with third par‐
ties. The US Government’s digital analytics program has taken this
approach, ensuring that Google Analytics does not track individuals
or share information with third parties and that it anonymizes all
user IP addresses.

As an additional example, the analytics provider Piwik actively seeks
to maintain user privacy while working with user analytics through:

• Providing an analytics opt-out mechanism
• Deleting logs older than a few months
• Anonymizing IP addresses
• Respecting Do Not Track
• Setting a short expiration date for cookies

These examples provide a good baseline for how we should aim to
handle analytics on our sites with any provider. By taking this extra
care with user information, we may continue to use analytics to pro‐
vide greater insights into the use of our sites while maintaining user
privacy.

De-identification
Though it is preferable to avoid the tracking of users completely,
there may be instances where this choice is outside of the control of
web developers. In these cases, we may be able to guide the decision
to de-identify collected user data, ensuring that user privacy remains
intact. The goal of de-identification is to ensure that any collected
data cannot be used to identify the person who created the data in
any way.

However, de-identification is not without its limitations, as de-
identified data sets can be paired with other data sets to identify an
individual. In the paper “No Silver Bullet: De-Identification Still
Doesn’t Work,” Arvind Narayanan and Edward W. Felten explore
the limits of de-identification. Cryptographic techniques such as dif‐
ferential privacy can be used as another layer to help limit the iden‐
tification of individual users within collected data sets.

12 | Chapter 2: Respecting User Privacy

https://analytics.usa.gov/#explanation
https://piwik.org/
http://piwik.org/blog/2014/01/data-privacy-day-january-28th/
http://bit.ly/2el6qtJ
http://bit.ly/2el6qtJ
http://bit.ly/1KxBM7f
http://bit.ly/1KxBM7f

User Consent and Awareness
In 2011 the European Union passed legislation requiring user con‐
sent before using tracking technology. Specifically, the privacy direc‐
tive specifies:

Member States shall ensure that the use of electronic communica‐
tions networks to store information or to gain access to informa‐
tion stored in the terminal equipment of a subscriber or user is only
allowed on condition that the subscriber or user concerned is pro‐
vided with clear and comprehensive information in accordance
with Directive 95/46/EC, inter alia about the purposes of the pro‐
cessing, and is offered the right to refuse such processing by the
data controller.

This means that any site using cookies, web beacons, or similar tech‐
nology must inform the user and receive explicit permission from
her before tracking. If you live in Europe or have visited a European
website, you are likely familiar with the common “request to track”
banner. This law is not without controversy, as many feel that these
banners are ignored, viewed as a nuisance, or otherwise not taken
seriously.

In the UK, the guidance has been to simply inform users that they
are being tracked, providing no option to opt out. For example, the
website of the Information Commissioner’s Office, the “UK’s inde‐
pendent authority set up to uphold information rights in the public
interest, promoting openness by public bodies and data privacy for
individuals,” opts users in, but clicking the “Information and Set‐
tings” link provides information about browser settings and disa‐
bling cookies on the site (see Figure 2-2).

User Consent and Awareness | 13

http://bit.ly/2fT0CJc
http://bit.ly/2fT0CJc
http://celso.io/2016/01/31/cookies.html
https://ico.org.uk/

Figure 2-2. ico.org.uk’s cookie alert

Though based in the United States, the site Medium.com alerts users
with DNT enabled how their information will be used and assumes
tracking consent only when users log in to their accounts (see
Figure 2-3).

14 | Chapter 2: Respecting User Privacy

Figure 2-3. Medium’s tracking notification when signing in with DNT
enabled

Creating a Do Not Track Policy
While there is value in informing users of a site’s tracking policy, I
believe that the best way to provide privacy controls is by respecting
the Do Not Track browser setting. This allows users to set a privacy
preference once and forget about it, rather than having to maintain
individual settings across the web. Since there is no absolute defini‐
tion of what Do Not Track encompasses, to effectively implement it
you will likely need to develop a DNT policy for your site or applica‐
tion.

The Electronic Frontier Foundation (EFF) provides a sample Do
Not Track policy. This document serves as a solid foundation for
any site’s Do Not Track policy and can be used verbatim or adapted
to suit an organization’s needs. The EFF also provides a set of fre‐

User Consent and Awareness | 15

https://www.eff.org/dnt-policy
https://www.eff.org/dnt-policy
https://www.eff.org/dnt-policy#faq

quently asked questions and a human-readable summary of the pol‐
icy.

As developers, by committing to a Do Not Track policy we are able
to ensure that we comply with the tracking preferences of our users.

Further Reading
• “The Emerging Ethical Standards for Studying Corporate

Data” by Jules Polonetsky and Dennis Hirsch
• “Do Not Track Is No Threat to Ad-Supported Businesses” by

Jonathan Mayer
• The Electronic Frontier Foundation’s guide to Do Not Track
• Mozilla: Developer Network’s DNT header reference
• W3C: Working Draft “Tracking Compliance and Scope”

16 | Chapter 2: Respecting User Privacy

https://www.eff.org/dnt-policy#faq
http://bit.ly/2fDkWux
http://on.recode.net/2fZZG4W
http://on.recode.net/2fZZG4W
http://stanford.io/2el7uxz
https://www.eff.org/issues/do-not-track
https://mzl.la/2frntcJ
http://bit.ly/2fQ4Egz

CHAPTER 3

Encrypting User Connections
with HTTPS

“S is for secure” may sound like a line from a children’s TV show, but
when appended to HTTP that’s exactly what it means. HTTPS was
first developed for use in Netscape Navigator in 1994 and quickly
became an important indicator of security for ecommerce and bank‐
ing sites on the developing web.

As we move an ever-increasing amount of personal data and infor‐
mation across the web, ensuring user privacy and the authenticity of
information becomes increasingly important. Over a standard
HTTP connection, users are open to advertising injection, content
changes, and additional tracking that isn’t possible over HTTPS.
This is bad for users and takes away control from site owners. In
response, there has been a movement toward building HTTPS-only
sites. Despite this, at the time of writing, less than 11% of the top
million websites currently use HTTPS by default.

In this chapter we’ll explore how HTTPS works, investigate the ben‐
efits of HTTPS-only sites, and look at how we can enable HTTPS
for our sites today.

17

https://trends.builtwith.com/ssl/SSL-by-Default

How HTTPS Works
At the most basic level, the HTTP request and response cycle is
when a web-connected computer requests a specific resource
through a URL and a server responds with that resource, such as an
HTML page (see Figure 3-1).

Figure 3-1. The HTTP request/response cycle (icons by unlimicon)

When this information is requested, not only are the files sent over
the wire, but so is user information, such as the user’s IP address,
location, browser information, system information, and so on. More
importantly, all of this information is sent as unencrypted plain text
over the public internet, meaning that any network sitting between
the user’s browser and the server has access to that information.
This means that when I request a website like in Figure 3-1, what
I’m really saying is, “Hello, I’m user 192.00.000.001 in the United
States using Mozilla Firefox 48.0.1 on an Intel Macintosh 10.11.6
and would like the /page.html resource from http://ethicalweb.org.”
The server in turn responds by returning the unencrypted resource
to my browser.

HTTPS works similarly to HTTP, but adds a layer of Secure Sockets
Layer/Transport Layer Security (SSL/TLS) encryption. This means
that requests and responses are made over a secure encrypted con‐
nection. These requests include only the user’s IP address and the
domain of the requested resource, so in this case my request would
appear as “Hello, I’m user 192.00.000.001 and would like a resource
from https://ethicalweb.org.” The server would then respond with an
encrypted version of the resource.

18 | Chapter 3: Encrypting User Connections with HTTPS

https://thenounproject.com/unlimicon/
http://ethicalweb.org
https://ethicalweb.org

SSL or TLS?
TLS is the updated and more secure version of SSL. Throughout the
remainder of this chapter I will refer to SSL/TLS simply as TLS,
though some external references may use SSL as the catch-all term.
Confusing? Yup! This represents one of the many reasons that
HTTPS can seem intimidating.

The United States government’s HTTPS-Only Standard helpfully
demonstrates the difference between these two requests. The stan‐
dard unencrypted HTTP request includes a number of headers
about the client and the request, as seen in Figure 3-2.

Figure 3-2. Request headers over HTTP

By contrast, the encrypted HTTPS request limits this information
(Figure 3-3).

Figure 3-3. Request headers over HTTPS

How the TLS Connection Works
Let’s take a closer look at how the TLS connection works. To provide
an encrypted connection, a site must obtain a TLS certificate. TLS
certificates are used to verify the authenticity of the domain; they
relay information about the certificate itself and contain a public key
that will be exchanged with the user’s browser.

How HTTPS Works | 19

http://bit.ly/2g7ASbU

The steps of the process are much like the steps taken when pur‐
chasing a car (only a lot faster!):

1. Greet one another.
2. Exchange the certificate.
3. Exchange the keys.

First, the user’s client says hello by reaching out to the server and
requesting the HTTPS resource. This request contains all of the
information about the user’s connection that the server will need,
such as the supported TLS version. In our car metaphor, in this step
we walk into the dealership, ask to buy a car, state the type of car
we’d like to buy, and offer up our trade-in vehicle.

The next step is to exchange the certificate. After the initial client
request, the server will respond with a TLS certificate. This certifi‐
cate has been either self-signed or issued by a trusted certificate
authority (CA) and contains information such as the name of the
domain it is attached to, the name of the certificate owner, the dates
that the certificate is valid, and a public key. In our car purchase
metaphor, this is the deed to the car. With this information, we’re
able to verify that the seller actually owns the car we’re purchasing.

Lastly, the browser and server exchange keys for data encryption
and decryption. Along with the certificate, the server sends a public
key. In response, the browser sends the server an encrypted request
for the specific URL/assets it is trying to access. The web server then
decrypts this information and returns an encrypted version of the
resource to the client, which decrypts it locally. In our car purchas‐
ing metaphor, we are now handing over the keys to our trade-in,
obtaining the key for our new vehicle, and driving away.

To a user, all of this happens seamlessly and instantly, but this pro‐
cess adds the important layer of encrypted protection that HTTPS
provides.

Symmetric Keys
Symmetric keys work by using the same key to encrypt and
decrypt. To make this process secure, this key is transmitted from
the client to the server using an asymmetric algorithm (a public/
private key exchange). The server first sends a copy of its asymmet‐
ric public key to the client, in the TLS certificate. The client gener‐
ates a symmetric session key, encrypts it with the public key, and

20 | Chapter 3: Encrypting User Connections with HTTPS

sends it back to the server; the server then uses its asymmetric pri‐
vate key to decrypt the symmetric session key. The server and client
are now able to use the symmetric session key to encrypt and
decrypt everything transmitted between them. It’s like a double-
decker encryption sandwich, ensuring that the information remains
secure while traveling between the user and the server.

Why Use HTTPS
Now that we’ve looked at what HTTPS is and how it works, we can
begin to see some of the value it provides both to our users and to
ourselves as site owners and maintainers. Specifically, reasons to use
HTTPS include the following:

• Protecting users’ privacy and security
• Proving a site’s authenticity and integrity
• Browser deprecated HTTP
• Potential search ranking improvements

Let’s take a closer look at each of these.

User Privacy and Security
In the previous chapter we looked at the value we can provide by
respecting the privacy of users who enable the Do Not Track
browser setting. However, many users are simply unaware of these
types of features. One way that we can aid the privacy of all users is
by using HTTPS on our sites. This provides our users with private,
encrypted connections to our sites. HTTPS prevents monitoring of
sites on public networks and keeps passive attackers from eaves‐
dropping on a user’s web traffic.

Site Authenticity
HTTPS aids in verifying the authenticity of a site and its content.
When a site is served over HTTPS, users can feel confident that they
are visiting the site they intended and receiving the content that the
site owner intended for them to see.

When describing its decision to move to HTTPS, popular news
website BuzzFeed detailed the authenticity benefits of HTTPS:

Why Use HTTPS | 21

http://bzfd.it/2g7DlDq

Verification is a lesser known, but equally important benefit of
HTTPS. It helps prevent what is called a Man-in-the-Middle attack,
or MITM attack. An MITM attack via your browser can change the
content of any non-HTTPS website you’re visiting without you
knowing. This means an attacker can modify news stories to
change or remove info, or they can change the contact details on a
BuzzFeed contributor’s author page so you see a fake account the
attacker controls.

Browsers Deprecating HTTP
Currently, browsers display an indication whenever a site is being
served securely using HTTPS. This appears as a green padlock next
to the site’s URL (Figure 3-4).

Figure 3-4. HTTPS notification in the Google Chrome browser

However, there is no indicator for sites that are not using HTTPS
(Figure 3-5).

Figure 3-5. Sites not served over HTTPS lack a notification

Recently the Chromium team pointed out that “people do not gen‐
erally perceive the absence of a warning sign” and consequently sug‐
gested that browsers instead mark HTTP as insecure, alerting users
when sites are being served over HTTP. Calling attention to sites
served over plain HTTP would send a clear signal that HTTPS is
preferred, promoting the deprecation of HTTP.

The second way that browsers are beginning to deprecate HTTP is
by making new browser APIs available only to sites served over
HTTPS. These include offline capabilities with service workers (cov‐
ered in Building Web Apps that Work Everywhere), the ability to
access users’ camera and audio inputs with getUserMedia, and the
ability to access user location information with the geolocation API.
Looking at the types of information these APIs have access to, I’m
thankful that browser vendors have decided that they should only be
accessed over a secure connection. An added benefit of developing

22 | Chapter 3: Encrypting User Connections with HTTPS

http://bit.ly/2fNpY7m
http://bit.ly/2fRqqE9
http://oreil.ly/2fmRTuc
https://mzl.la/2fZYXR4
http://mzl.la/1DGAq8B

forward-thinking applications is that HTTPS will quickly become a
requirement.

Improved Search Rankings
In 2014 Google announced that its search engine would begin to
prioritize sites using HTTPS in search results. According to the blog
post announcement:

[O]ver the past few months we’ve been running tests taking into
account whether sites use secure, encrypted connections as a signal
in our search ranking algorithms. We’ve seen positive results, so
we’re starting to use HTTPS as a ranking signal. For now it’s only a
very lightweight signal—affecting fewer than 1% of global queries,
and carrying less weight than other signals such as high-quality
content—while we give webmasters time to switch to HTTPS. But
over time, we may decide to strengthen it, because we’d like to
encourage all website owners to switch from HTTP to HTTPS to
keep everyone safe on the web.

If nontechnical colleagues or clients are not yet convinced of the
need for HTTPS everywhere, the potential for improved search
rankings may serve as an additional selling point.

Implementing HTTPS
Now that we have examined how HTTPS works and explored why
we should use it, let’s take a look at implementing HTTPS for our
own sites.

Let’s Encrypt
Perhaps one of the most exciting developments in HTTPS over the
past few years has been the creation of Let’s Encrypt, a free, automa‐
ted, and open certificate authority created by the Internet Security
Research Group (ISRG). The stated objective of Let’s Encrypt is “to
make it possible to set up an HTTPS server and have it automati‐
cally obtain a browser-trusted certificate, without any human inter‐
vention.”

Though Let’s Encrypt provides an open certificate authority, the
actual implementation can be challenging. Thankfully, many com‐
munity clients have been created to simplify the implementation
process. The most useful, and the one recommended by the Let’s
Encrypt team, is Certbot. Developed by the Electronic Frontier

Implementing HTTPS | 23

http://bit.ly/2fPOPpN
http://bit.ly/2fPOPpN
https://letsencrypt.org/
https://letsencrypt.org/isrg/
https://letsencrypt.org/isrg/
https://certbot.eff.org/
https://www.eff.org/

Foundation, Certbot works by automatically fetching and deploying
Let’s Encrypt-generated TLS certificates to our servers.

The excellent Certbot documentation allows us to select a specific
server and operating system and provides instructions based on
these conditions. Let’s look at how we would implement Certbot on
an Apache server running on Ubuntu 16.04.

A version of Certbot is packaged for 16.04, meaning from our server
we can run apt-get to install it:

$ sudo apt-get install python-letsencrypt-apache

Let’s Encrypt ships with a beta Apache plug-in that will automate
obtaining and installing the certificate. Simply run:

$ letsencrypt --apache

And that’s it! With those few simple commands we will have
installed a TLS certificate for our server. To find guidelines for
installation for your specific server configuration, visit the Certbot
website.

Renewal
Let’s Encrypt certificates are valid for 90 days, meaning they will
need to be renewed on a regular basis. To do that, we could log into
our server every 90 days and run:

$ letsencrypt renew

However, this manual process has a high likelihood of failure (what
if we’re on vacation, or ill, or simply forget?). Instead, Certbot rec‐
ommends running a cron job that will test for certificates that
require renewal on a daily basis. First, let’s test the renewal process:

$ letsencrypt renew --dry-run

Once we’ve verified that this works, we can create the cron job. We’ll
create a job that runs the renew script twice daily, at 5:17 am and
5:17 pm (Certbot requests that the jobs run at a random minute
within the hour).

First, we open the crontab:

$ crontab -e

Then we add the following to the file:

17 05, 17 17 * * * letsencrypt renew

24 | Chapter 3: Encrypting User Connections with HTTPS

https://www.eff.org/
https://certbot.eff.org
https://certbot.eff.org

Our Let’s Encrypt-issued certificate will now automatically renew
when needed.

Other Certificate Options
Though Let’s Encrypt is a fantastic and recommended option, it may
not be the right one for you or your organization. Amazon Web
Services (AWS) now offers free TLS certificates that are easy to set
up and deploy. I have used this service, and it is a great and simple
option. Another alternative, SSLMate, works similarly to Let’s
Encrypt by automating certificates, but it’s not free.

For some it may be preferable to go the traditional route of purchas‐
ing the certificate from a CA and uploading it to the server. Com‐
mon TLS CAs are Verisign, Thawte, and RapidSSL.

For implementing TLS on your server, Mozilla provides a Configu‐
ration Generator that outputs the settings needed for popular
servers such as Apache, Nginx, and Lighttpd with a variety of TLS
certificate types. Once configured, SSL Labs provides an SSL Server
Test that you can use to analyze the TLS configuration of your
server.

Other Considerations
Once you have implemented HTTPS, there are a few site-wide
changes to take into consideration:

• Redirecting HTTP to HTTPS
• Enabling HTTP Strict Transport Security (HSTS)
• Preventing mixed content and using relative URLs
• Using secure cookies

Redirect HTTP to HTTPS
If you’re adding HTTPS to an existing site, it may be worth redirect‐
ing all HTTP requests to HTTPS. This will ensure that all existing
external links are served over a secure connection.

Following our previous Let’s Encrypt example, we could redirect all
links with Apache by adding the following to our Virtual Host:

ServerName www.example.com
Redirect "/" "https://www.example.com/"

Other Considerations | 25

https://aws.amazon.com/certificate-manager
https://sslmate.com/
https://www.verisign.com/
https://www.thawte.com/
https://www.rapidssl.com/
http://bit.ly/2fz7iIv
http://bit.ly/2fz7iIv
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/

HTTP Strict Transport Security
When we forward HTTP requests to HTTPS, the user is initially
opening a request with the unencrypted version of our site before
being redirected. Unfortunately, this opens users up to a man-in-
the-middle attack. To prevent this from happening on future visits,
we can pair the forward with HTTP Strict Transport Security, which
ensures that users only access the site over HTTPS.

HSTS is a browser feature that allows a site to request that it only be
served over HTTPS on future visits. It works by having a server pro‐
vide a Strict-Transport-Security header along with a max-age.
After receiving this header, the browser will only request pages from
that domain over HTTPS.

Here is an example HSTS header, with an expiration of one year and
instructions to include subdomains:

Strict-Transport-Security: max-age=31536000; includeSubDomains

To set the HSTS header in Apache, we would add the following to
our Virtual Host:

Header always set Strict-Transport-Security "max-age=63072000;
 includeSubdomains; preload"

Mixed Content and Relative URLs
Mixed content occurs when a site is served over a secure HTTPS
connection but contains links to resources such as images, CSS, or
JavaScript that are served over HTTP. When this occurs, browsers
display an error message to users warning them that the site con‐
tains insecure content.

This often happens in error, or may occur when a site is converted
to HTTPS and has lingering absolute links. To avoid this situation,
convert links beginning with http:// to https:// or use relative URLs
when linking to local files.

Secure Cookies
When sending cookies from a server application over an HTTPS
connection, we should enable the secure flag. Using the secure flag
will ensure that the cookie request will only be sent over an encryp‐
ted connection (HTTPS).

26 | Chapter 3: Encrypting User Connections with HTTPS

For example, when setting a cookie using the popular Node.js web
framework Express, secure is an added cookie parameter:

res.cookie('user', 'adam', { secure: true });

In the Django framework, you’ll need to set the SES

SION_COOKIE_SECURE and CSRF_COOKIE_SECURE settings to True.

Conclusion
HTTPS provides numerous benefits to both site owners and users,
helping make the web more secure. Whatever method you choose to
implement HTTPS for your sites, you are taking important steps to
improve the security and privacy of your users.

Further Reading
• The United States Government’s HTTPS-Only Standard
• GOV.UK’s “Using HTTPS”
• “How Does HTTPS Actually Work?” by Rob Heaton
• Is TLS Fast Yet?
• W3C report “Securing the Web”
• Google Developers resource “Enabling HTTPS on Your

Servers”
• “We’re Deprecating HTTP and It’s Going to Be Okay” by Eric

Mill

Conclusion | 27

https://https.cio.gov/
http://bit.ly/2eXNEag
http://bit.ly/2fDghL2
https://istlsfastyet.com/
http://bit.ly/2fNLqt3
http://bit.ly/2fDfiuz
http://bit.ly/2fDfiuz
http://bit.ly/2fEiWAv

CHAPTER 4

Securing User Data

Early in my web development career I took on a freelance role with
a small retail company. Part of the company’s business model was
catering to corporate clients. Generally, I was doing small site main‐
tenance that involved updating HTML, CSS, and Perl code devel‐
oped a few years earlier by a (likely more expensive) consulting
company. A few days into the job I was familiarizing myself with the
codebase when I came across a file named cc.txt. This file contained
the credit card information of hundreds of corporate clients, stored
as plain text. I quickly deleted the file from my local machine and,
I’m pretty sure, closed the laptop’s lid and backed away from it
slowly. In the end, I asked to be let out of the contract: I advised the
company that this needed to be fixed and told them they should hire
someone more experienced than me to do it. I hope they took that
advice.

It seems like every few weeks there’s a major breach that leaks user
information. Brian Krebs does a good job of cataloging these events
on his site, KrebsOnSecurity. Here a few highlights that have been
heavily covered by the news media:

• In 2015 it was uncovered that the United States Government’s
Office of Personnel Management (OPM) had undergone a data
breach involving millions of government employee records.
These records included security clearance details, personal
information, and fingerprints.

• The extramarital dating website Ashley Madison was infa‐
mously breached in 2015, with the attackers revealing user

29

http://bit.ly/2g7UnB7
http://bit.ly/2emfcYr
http://bit.ly/2emfcYr
http://bit.ly/2emfnmA
http://bit.ly/2emfnmA

information such as names, addresses, email addresses, and
phone numbers.

• In 2015 the insurance provider Anthem Inc. was breached.
Hackers stole over 78 million records containing names, birth
dates, medical IDs, Social Security numbers, street addresses,
email addresses, and employment details.

• In 2016 the professional social network LinkedIn announced
that it had been breached in 2012 and that hackers had released
a data set containing over 100 million users’ email addresses and
hashed passwords.

• In 2016 the file syncing service Dropbox also announced a 2012
breach, which included account information for over 60 million
of its users.

It’s not all doom and gloom, however. The web is a wonderful place
and a reflection of both the positives and the negatives of our soci‐
ety. Just as we wouldn’t leave our front doors wide open when we’re
not at home, there are steps we can take to lock the doors of our web
applications. Taking these measures will help protect the valuable
information our users share with us. In this chapter we’ll explore the
basics of web development security.

The Scope of This Chapter
Security is a challenging topic, and something that can (and
should!) be explored much more deeply than is possible in a single
chapter. There are books and entire careers dedicated to this topic.
My hope is that this chapter will give you a high-level overview of
the basics. The “Further Reading” section at the end of this chapter
contains links to articles, guides, and books that dive deeper into
web security.

Building on a Strong Foundation
Being web developers means that we are constantly learning about
and using new tools. It’s an exciting perk of the job. That said, when
building secure applications, we are often best served to use estab‐
lished frameworks that have been thoroughly vetted and that pro‐
vide baked-in security support. As an example, let’s look at the
security options when building a web application with Python or
Node.js.

30 | Chapter 4: Securing User Data

http://bit.ly/2fAtemt
http://bit.ly/2fFkNZH
http://bit.ly/2fo1HEy
http://bit.ly/2fo1HEy

The Python environment is relatively stable, and most web applica‐
tions are built using either the Django or Flask web frameworks.
Django provides many security features out of the box, such as
cross-site scripting (XSS), SQL injection, and clickjacking protec‐
tion. As Flask is an intentionally more lightweight framework, it
comes with relatively few built-in security features, such as manage‐
able XSS protection. Additional security features can be added with
the Flask-Security extension.

Node.js is notorious for its rate of change and the number of avail‐
able frameworks and libraries. This can be both something to love
about the platform and a frustration point for many developers. The
site Node Frameworks attempts to catalog them all. Despite there
being dozens of Node.js web framework options, when considering
security we are likely to be best served by choosing an established
framework that is used in production by other web applications,
such as Express.

Similar to Flask, Express is a lightweight application framework, but
there are several plug-ins that enhance its security features. The two
most common are Lusca, which was developed by PayPal, and Hel‐
met. These both add sensible defaults for features such as XSS pro‐
tection, cross-site request forgery (CSRF) protection, and content
security policy settings, among others.

In addition to using security-focused libraries, we should also work
to ensure that our dependencies are up to date and free of known
vulnerabilities.

In Python we can check for outdated pip-installed packages with:

$ pip list --outdated

Similarly, in Node.js we can list outdated packages with npm:

$ npm outdated

In addition to these manual methods, there are tools that will help
maintain dependency updates and scan for security vulnerabili‐
ties. Greenkeeper will scan your project for outdated Node.js depen‐
dencies and create a pull request with the updates. Greenkeeper will
also run your application’s test suite, ensuring that the updated
dependencies do not break the build. Snyk is a tool that will scan
Node.js packages for known vulnerabilities and alert you to insecure
dependencies. The site also provides a command-line means to fix‐
ing these vulnerabilities.

Building on a Strong Foundation | 31

https://www.djangoproject.com/
http://flask.pocoo.org/
http://bit.ly/2eTqQp0
http://bit.ly/2eXISJY
https://pythonhosted.org/Flask-Security/
http://nodeframework.com/
http://expressjs.com/
https://github.com/krakenjs/lusca
https://github.com/helmetjs/helmet
https://github.com/helmetjs/helmet
https://greenkeeper.io
https://snyk.io/

Though these examples are limited to Python and Node.js, I hope
that you can see how the concepts map to your web stack of choice.
When we use established technologies and take advantage of built-
in or plug-in-based security features, we are creating solid security
foundations for our sites.

OWASP Top 10
Now that we’ve started our application off on a strong foundation,
it’s worth exploring the common security vulnerabilities that we
should be aware of. Every few years the Open Web Application
Security Project (OWASP) publishes a list of the most critical web
application security flaws. As of the most recent publication, the
OWASP Top 10 is comprised of:

1. Injection
2. Broken authentication and session management
3. Cross-site scripting
4. Insecure direct object references
5. Security misconfiguration
6. Sensitive data exposure
7. Missing function-level access control
8. Cross-site request forgery
9. Using components with known vulnerabilities

10. Unvalidated redirects and forwards

This list of common vulnerabilities can provide us with an aware‐
ness of potential weaknesses in our own applications.

Secure User Authentication
When a user creates an account with our site, she is placing her trust
in us. Often in this process the user may agree to terms of service
about how she may interact with our site and services and how the
site owners will use the data and information users provide within
the application. One crucial step in upholding our end of this agree‐
ment is to ensure that user login information is kept secure and pri‐
vate. Let’s explore how we can do so.

32 | Chapter 4: Securing User Data

http://bit.ly/1lE9VSQ

Creating Our Own Login System
When creating our own authorization system, it is critical that we
send this information over an HTTPS connection, as discussed in
the previous chapter, and that we effectively obscure our users’ pass‐
words when they are stored in our database. To effectively do this we
should use a combination of hashing and salting.

Hashing is the act of obscuring a string of text by turning it into a
seemingly random string. Hashing functions are “one way,” meaning
that once the text is hashed it cannot be reverse engineered back to
the original string. When hashing a password, the plain text version
of the password is never stored in our database.

Salting is the act of generating a random string of data that will be
used in addition to the hashed password. This ensures that even if
two user passwords are the same, the hashed and salted versions will
be unique.

bcrypt is a popular hashing function, based on the Blowfish cipher,
that is commonly used in a range of web frameworks. In Node.js we
can use the bcrypt module to both salt and hash our passwords.

First we install bcrypt with npm:

$ npm install bcrypt --save

Then, in our application code, we require the module and write a
function to handle the salting and hashing using bcrypt:

// require the module
var bcrypt = require('bcrypt');

// the cost of processing the salting data - 10 is the default
var saltRounds = 10;

// function for hashing and salting
function passwordEncrypt(username, password) {
 // generate the salt
 bcrypt.genSalt(saltRounds, function(err, salt) {
 // generate the hash
 bcrypt.hash(password, salt, function(err, hash) {
 // store username, hash, and salt in your password DB
 });
 });
}

For example, the password PizzaP@rty99 would generate the
hashed and salted output $2a$10$HF2rs.iYSvX1l5FPrX697O9dYF/

Secure User Authentication | 33

https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://www.npmjs.com/package/bcrypt

O2kwHuKdQTdy.7oaMwVga54bWG (which is the salt plus the encrypted
password string). Now, when checking a user’s password against the
hashed and salted password, we can use bcrypt’s compare method:

// password is a value provided by the user
// hash is retrieved from our DB
bcrypt.compare(password, hash, function(err, res) {
 // res is either true or false
});

All other major web frameworks also support the use of bcrypt. For
example, Django’s documentation provides an excellent overview of
integrating bcrypt into an application. Though bcrpyt is a popular
and easy-to-implement hashing function, there are several other
effective options available, such as PBKDF2 and scrypt. I won’t
debate the benefits and merits of these individually, but when imple‐
menting a login system I encourage you to research various options
and choose the one most appropriate for your application.

OAuth 2.0
An alternative option to providing our own login system is to use
OAuth 2.0. OAuth 2.0 is a user authorization system that lets us pro‐
vide a user login option through popular third-party sites such as
Google, Facebook, Twitter, LinkedIn, and more. This allows us to
both rely on large and trusted third parties for providing authentica‐
tion and pull in useful user information, as authorized by the user,
from the chosen service.

Even if you have never worked with OAuth as a developer, you are
likely familiar with the flow from the perspective of a user.

First, a user clicks a login link from our application (Figure 4-1).

34 | Chapter 4: Securing User Data

http://bit.ly/2eWarRv
https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Scrypt

Figure 4-1. An OAuth 2.0 sign-in form (image from the Hackathon
Starter Kit)

The user is then directed to an access request for the specified ser‐
vice provider, like the one in Figure 4-2. This request details the
level of access to user information that the accessing application will
have.

Secure User Authentication | 35

https://github.com/sahat/hackathon-starter
https://github.com/sahat/hackathon-starter

Figure 4-2. An example OAuth 2.0 access request

If the user grants the authorization, the service redirects the user
back to our site with an authorization code. Our server will then
exchange the authorization code for an access token. Once the
access token has been granted, that will be used to access the user
information from the third-party service.

Links to libraries for popular programming languages and web
frameworks, tutorials, and documentation can be found on the
OAuth website. Additionally, Aaron Parecki, the maintainer of
OAuth, has written a fantastic guide called “OAuth 2 Simplified.”

Password Strength
Strong user passwords are good for security, but giving users
requirements such as characters the password must contain and a
required length will often frustrate them. Some password policies
are even just plain silly. Worst of all, the resulting passwords may
actually be less secure, as the policies provide potential hackers with
guidelines for password formats when attempting brute force pene‐
tration. Additionally, users who don’t utilize password management

36 | Chapter 4: Securing User Data

https://oauth.net/
https://oauth.net/
http://bit.ly/2fFvT0J
http://bit.ly/2fFTqeu

software are likely to look for workarounds or write them down or
store the passwords somewhere less secure.

If you would like to guide users toward more secure passwords, a
better alternative is to use a password strength estimator. The
Carnegie Mellon University study “How Does Your Password Meas‐
ure Up? The Effect of Strength Meters on Password Creation” meas‐
ured the impact of password strength meters and password
requirements:

We found that meters with a variety of visual appearances led users
to create longer passwords. However, significant increases in resist‐
ance to a password-cracking algorithm were only achieved using
meters that scored passwords stringently. These stringent meters
also led participants to include more digits, symbols, and uppercase
letters.

I’m a big fan of the library zxcvbn, created by the team at Dropbox.
The plug-in is reasonably simple to use, but more importantly it is
based on a really sound methodology for determining password
strength, which the Dropbox team has helpfully detailed.

If your organization is interested in password requirements, steering
them instead toward password strength indicators may provide a
better experience for users, as well as leading to better password
security.

Multifactor Authentication
One way we can provide a more secure authentication system to our
users is by making multifactor authentication available. Multifactor
authentication is done by combining two more or more of the fol‐
lowing:

1. A secret known to the user, such as a password or PIN
2. A physical object in the user’s possession, such as a mobile

phone or a USB FIDO U2F Security Key (Figure 4-3)
3. A physical characteristic of the user, such as a fingerprint or

typing speed

Secure User Authentication | 37

http://bit.ly/2eW89lg
http://bit.ly/2eW89lg
http://bit.ly/2fFpikX
http://bit.ly/2fzhTCE

Figure 4-3. A USB FIDO U2F Security Key

In web applications, the most common pattern is to make two-
factor authentication available by providing a physical authentica‐
tion in addition to the standard username/password flow. Often,
users will receive a text message on their mobile phone or install a
multifactor authentication application that will provide the appro‐
priate code for this additional verification step. Adding a physical
dimension reduces the possibility of password theft providing access
to a user’s account. Though many users may opt not to enable two-
factor authentication, providing this option is a good step toward
better security than standard username and password authentica‐
tion.

The Least Secure Part of a Login System
The least secure part of any login system is the human using it.
Weak and shared passwords, phishing attacks, and insider threats
are the biggest risks to any authenticated system.

Other Types of Authentication
In addition to the standard username/password and two-factor
authentication models, there are less common authentication tech‐
niques such as one-time passwords and biometrics. Though uncom‐
mon, these may be worth exploring further.

One-time passwords work by generating a unique token and send‐
ing it directly to a user, typically via email or a mobile device. The
popular chat application Slack makes use of one-time passwords,
generating a unique link and sending it to a user when they sign into

38 | Chapter 4: Securing User Data

a Slack channel. This can also be paired with two-factor authentica‐
tion to add an extra layer of user protection.

Another interesting approach is the use of biometrics. We’ve likely
all seen science fiction movies where a retina scanner or fingerprint
scanner is used to open a door, but this technology is not something
unattainable. In fact, most smartphones now ship with a biometric
fingerprint login. Though not currently used on the web, it’s not
hard to imagine a future where there are biometric login options. If
that time comes, however, there will need to be thoughtful discus‐
sions around user security and privacy.

Encrypting User Data
Depending on the types of applications we work on, they may con‐
tain sensitive user information beyond user credentials. Our appli‐
cations may store user locations, journal entries, Social Security
numbers, health records, or any number of private bits of informa‐
tion that users have entrusted us with. When this is the case, it
becomes important to encrypt sensitive user information, in addi‐
tion to passwords. Doing this acknowledges that we are willing to
take extra steps and security precautions with our users’ informa‐
tion.

We’ve recently seen a rise in the popularity of services that encrypt
and secure user data. The email provider ProtonMail offers secure
and encrypted email accounts, and the mobile messaging applica‐
tion Signal is fully encrypted. We’ve also seen encryption become a
selling point for mainstream applications. For instance, the popular
messaging app WhatsApp now provides end-to-end encryption for
user conversations. Even if a user is unaware of this feature, it is pro‐
vided as an additional layer of security and privacy.

Encrypting user data can be useful for much more than messaging
and email applications, however. For example, in the case of the
OPM hack mentioned at the beginning of this chapter, government
employees would have greatly benefited from having their records
encrypted rather than stored as plain text in the database.

In Node.js we can use the built-in crypto library to encrypt and
decrypt user data. Here’s a very basic example of what that might
look like with a pair of functions that encrypt and decrypt some
plain text using a provided password:

Encrypting User Data | 39

https://protonmail.com/
https://whispersystems.org/
http://bit.ly/2g7Wx3O
https://nodejs.org/api/crypto.html

var crypto = require('crypto');

function dataEncrypt(password, text) {
 var cipher = crypto.createCipher('aes192', password);
 var encrypted = cipher.update(text, 'utf8', 'hex');
 encrypted += cipher.final('hex');
 return encrypted;
}

function dataDecrypt(password, encrypted) {
 var decipher = crypto.createDecipher('aes192', password);
 var decrypted = decipher.update(encrypted, 'hex', 'utf8');
 decrypted += decipher.final('utf8');
 return decrypted;
}

// encrypt some data
var encrypt = dataEncrypt('Password', 'This is encrypted!');
// returns f53a6a423a11be8f27ff86effa5ace548995866009190a90...
var decrypt = dataDecrypt('Password', encrypt);
// returns This is encrypted!

By storing user data in an encrypted format we are taking an extra
step toward securing that data for our users.

Sanitizing and Validating User Input
Interactive form fields and text input are often the differentiator
between a website and a web application. Introducing this type of
interactivity opens a site up to both database injections and cross-
site scripting attacks, two of the top three security vulnerabilities on
the OWASP Top 10 list. Database injections occur when an attacker
injects code or database commands (such as SQL statements) into
the database. Cross-site scripting can occur when an attacker is able
to inject malicious scripts into a site. Steps can be taken to prevent
both of these potential attacks by sanitizing and validating user
input.

To sanitize user-submitted content, we should whitelist the HTML
input that our application will accept. Whitelisting is preferred to
blacklisting user input as it gives us fine-grained control over the
type of content being entered and stored. If users are able to add
HTML to a field, we can choose the tags that should be available to
the user and whitelist those. We should be sure to avoid giving users
the ability to execute JavaScript or <script> tags within our applica‐
tions.

40 | Chapter 4: Securing User Data

http://bit.ly/1lE9VSQ

In Node.js we can use the sanitize-html module to do this. First,
we install the module as a project dependency:

$ npm install sanitize-html --save

Now in our project code we can include the module and sanitize
using a whitelist of accepted tags:

var sanitizeHtml = require('sanitize-html');

var dirty = 'HTML entered from the client';
var clean = sanitizeHtml(dirty, {
 allowedTags: ['b', 'i', 'em', 'strong', 'a'],
 allowedAttributes: {
 'a': ['href']
 }
});

To avoid database injection, we should further sanitize our user
input. When using an SQL database it is important to prevent char‐
acters being entered into the database so that SQL statements cannot
be injected. By contrast, NoSQL injections may be executed at either
the database or application layer. To prevent attacks when using a
NoSQL database, we should again ensure that executable code or
special characters used by the database are not entered into it.

Cross-Site Request Forgery Attacks
Cross-site request forgery (CSRF) is a type of attack where a site uti‐
lizes a user’s browser to manipulate a web application. Through
CSRF, an attacker can forge login requests or complete actions that
are typically done by a logged-in user, such as posting comments,
transferring money, or changing user account details. These attacks
can be carried out by utilizing browser cookies or user IP address
information. Whereas cross-site scripting attacks exploit a user’s
trust in a site, CSRF attacks exploit the trust a site places in the user’s
browser.

Wikipedia defines the following common CSRF characteristics:

• They involve sites that rely on a user’s identity.
• They exploit the site’s trust in that identity.
• They trick the user’s browser into sending HTTP requests to a

target site.
• They involve HTTP requests that have side effects.

Cross-Site Request Forgery Attacks | 41

http://bit.ly/2gavVhR
http://bit.ly/2gawM29y

Two possible steps we can take to prevent CSRF attacks are to
include a secret token in our forms and to validate the Referer
header in requests.

When dealing with form submission, most web frameworks provide
CSRF protection or have available plug-ins for generating and vali‐
dating the tokens. The Django web framework includes default mid‐
dleware for creating posts with CSRF tokens. The Node
module csurf provides the same functionality for applications built
using the Express framework.

The second protective measure we can take is to verify the Referer
header and, if it is not present or comes from an incorrect URL,
deny the request. It should be noted that this header can be spoofed,
so this is not a failsafe measure, but it can add a layer of protection
for users. Additionally, be aware that some users may disable this
header in their browsers due to privacy concerns and thus will not
benefit from Referer header validation.

Security Headers
To further harden our application’s security, we can set a number of
HTTP headers that give our users’ browsers information about the
types of requests possible on our site. Enabling each of these headers
will provide further protection for our users against potential threats
such as cross-site scripting and clickjacking.

Security Header Examples
I’ve included examples for enabling each header with an Apache
server. Brian Jackson’s article on KeyCDN’s blog, “Hardening Your
HTTP Security Headers,” offers both Apache and Nginx configura‐
tions for each of these headers.

Content-Security-Policy (CSP)
The Content-Security-Policy header is useful for mitigating XSS
attacks by limiting the use of resources outside the current domain.
When enabling CSP we are able to specify that all resources must
come from the current domain. We can do this in our Apache con‐
figuration as follows:

42 | Chapter 4: Securing User Data

https://docs.djangoproject.com/en/1.10/ref/csrf/
https://www.npmjs.com/package/csurf
https://www.keycdn.com/blog/http-security-headers
https://www.keycdn.com/blog/http-security-headers

header always set Content-Security-Policy "default-src 'self';"

The default-src setting is a catch-all that includes all resources,
such as JavaScript, images, CSS, and media. Our policy can be more
specific and use directives that specify individual resource policies.
For example, the following policy would only permit requests from
the origin domain ('self') for scripts, AJAX/Web Socket requests,
images, and styles:

default-src 'none'; script-src 'self'; connect-src 'self';
 img-src 'self'; style-src 'self';

The Content Security Policy Quick Reference Guide provides a full
list of directives.

It’s also possible to create a whitelist that will permit access to an
external domain, such as a content delivery network or analytics
host. The following example would permit scripts from cdn.exam
ple.com:

script-src 'self' cdn.example.com;

A helpful guide to writing content security policies is available on
the KeyCDN website, and the site CSP Is Awesome provides an
online generator you can use to create a custom CSP configuration.

X-Frame-Options
The X-Frame-Options header provides clickjacking protection for
our sites. It works by disabling or limiting content rendered in
a <frame>, <iframe>, or <object> tag.

The possible directives for X-Frame-Options are:

X-Frame-Options: DENY
X-Frame-Options: SAMEORIGIN
X-Frame-Options: ALLOW-FROM https://example.com/

In Apache, we can specify that only content from our domain can be
embedded within <frame>, <iframe>, or <object> tags by using the
following configuration:

header always set x-frame-options "SAMEORIGIN"

Security Headers | 43

https://content-security-policy.com/
https://www.keycdn.com/support/content-security-policy/
http://cspisawesome.com

X-XSS-Protection
The X-XSS-Protection header enables the cross-site scripting filter
in a user’s browser. Though this setting is typically enabled by
default in modern browsers, the use of this header will enforce the
policy if it has been disabled.

To configure X-XSS-Protection in our Apache configuration, we
can include this line:

header always set x-xss-protection "1; mode=block"

X-Content-Type-Options
The X-Content-Type-Options header is used to enforce file content
types. When a browser is unsure of a file type, the browser may do
content (or MIME) sniffing to guess the correct resource type. This
opens up a security risk as it can allow a user’s browser to be manip‐
ulated into running executable code concealed as another file type.

We can configure Apache to disallow content sniffing as follows:

header always set X-Content-Type-Options "nosniff"

Checking Security Headers
Once our security headers have been set, we can use securityhead‐
ers.io to scan our site. The tool analyzes the site’s response headers
and produces a grade indicating the level of protection. Scanning
the tool’s own site results in an A+ score (Figure 4-4).

Figure 4-4. Security header results for securityheaders.io

44 | Chapter 4: Securing User Data

https://securityheaders.io/
https://securityheaders.io/

Security Disclosures and Bug Bounty Programs
No matter how diligent we are about security, there may be flaws in
our application. To improve security and the user experience, we
should acknowledge this potential by having a strong security dis‐
closure plan and consider implementing a bug bounty program.

Developer Jonathan Rudenberg’s post “Security Disclosure Policy
Best Practices” provides a succinct strategy for handling security
disclosures. In it, he outlines the following key points for having an
effective security program:

1. Have a security page with an email address and PGP key for
submitting security disclosures.

2. Have a clear, concise, and friendly security policy.
3. Disclose any reported vulnerability.
4. Respond to the vulnerability quickly.
5. Don’t place blame on teammates or employees.
6. Alert customers and inform them of the remediation steps.

As part of this process, you may want to offer a bug bounty for secu‐
rity researchers who discover vulnerabilities. The site Bugcrowd has
compiled a list of bug bounty programs that can serve as exemplars.
Some well-known sites that offer bug bounties include Face‐
book, Google, GitHub, and Mozilla. Recently the United States
Department of Defense has even gotten in on the action, launching
the Hack the Pentagon program.

By providing clear steps for reporting security vulnerabilities and
transparent communication about remediation steps, we can work
to build additional trust in our users.

Conclusion
There are a dizzying number of possibilities when it comes to web
application security, but by building on a solid foundation, following
best practices, and providing clear security information to our users,
we can work to build a more secure web. I hope that this chapter
serves as a strong jumping-off point for your efforts to build and
maintain secure web applications.

Security Disclosures and Bug Bounty Programs | 45

http://bit.ly/2fhl44e
http://bit.ly/2fhl44e
http://bit.ly/2fNHhFg
http://bit.ly/2fSruWf
http://bit.ly/2fSruWf
http://bit.ly/2fRGgyv
https://bounty.github.com/
https://mzl.la/2frljtB
http://bit.ly/2fz7tTx

Further Reading
• Identity and Data Security for Web Development by Jonathan

LeBlanc and Tim Messerschmidt (O’Reilly)
• Security for Web Developers by John Paul Mueller (O’Reilly)
• Awesome AppSec
• “A Practical Security Guide for Web Developers” by FallibleInc
• OWASP Testing Guide
• “Python & Django Security on a Shoestring: Resources” by Kel‐

sey Gilmore-Innis
• “Security Tips for Web Developers” by Jesse Ruderman
• “The Password Manifesto” by Andrew A. Gill
• “Mozilla Cybersecurity Delphi 1.0: Towards a User-Centric Pol‐

icy Framework”
• XATO: Security
• xkcd: Password Strength

46 | Chapter 4: Securing User Data

http://oreil.ly/2g86Ip4
http://bit.ly/1iyw7DX
https://github.com/paragonie/awesome-appsec
http://bit.ly/2g1gvMG
http://bit.ly/2fANNPP
http://bit.ly/2eWhrh7
http://bit.ly/2fNLbyh
http://bit.ly/2fzeYtK
https://mzl.la/2fFZLpX
https://mzl.la/2fFZLpX
https://xato.net/
https://xkcd.com/936/

CHAPTER 5

Preserving User Data

Now that we’ve put a lot of effort into securing and ensuring the pri‐
vacy of our users’ data, we should also consider our users’ ownership
of and access to their data. As users pour their personal and profes‐
sional lives into the applications we build, the data created can
become a reflection of their lives. Our applications may store pho‐
tos, documents, journals, notes, private reflections, user locations,
food preferences, family relationships, meeting information, and
connections between all of these things. While this information can
be incredibly powerful to us in continuing to build and improve our
applications, our users also have a personal investment in the data
they have created and shared with us. As developers, we should
respect the implicit trust that our users place in the access to and
ongoing preservation of their data.

In 2009 the site GeoCities was shuttered. GeoCities was a free web-
hosting platform that was considered an important piece of early
web history. Though Yahoo!, which had acquired GeoCities in 1999,
provided guidance to users for how to preserve their sites elsewhere,
many of the sites were no longer actively maintained, so they risked
being lost forever. In light of this, several projects such as the Inter‐
net Archive, Archive Team, ReoCities, and OoCities undertook Her‐
culean efforts to archive or mirror the original GeoCities content.

In 2011 the social check-in service Gowalla announced that it would
be shutting down. Gowalla was an early competitor with Facebook
and had a passionate and enthusiastic user base. In a blog post,
Gowalla founder Josh Williams stated, “We plan to provide an easy

47

https://archive.org/web/geocities.php
https://archive.org/web/geocities.php
http://bit.ly/2fhi9sk
http://reocities.com/
http://www.oocities.org/
http://bit.ly/2fPYXz7

way to export your Passport data, your Stamp and Pin data (along
with your legacy Item data), and your photos as well.” Unfortunately,
despite the best intentions of the Gowalla team, the ability to export
data was not added before the service was fully shut down, causing
all Gowalla user data to be lost.

These are just two of many interesting examples of site closures or
significant feature changes that can cause user data to be lost. As
developers, we are entrusted with user information. By providing
users a means to export their data, we are able to give them more
control over how and where it is used.

Data Ownership
Who owns the data generated within our applications? Though it
may be easiest to say “the user,” this can become an increasingly
complicated question when we consider things such as collaborative
documents, online discussions, and shared calendars, which may
have an initial creator but ultimately may also have multiple main‐
tainers. What about the sites themselves? Sometimes the terms of
service may insist on ownership or exclusive rights to a user’s cre‐
ated content. As part of Facebook’s terms of service, the company
enforces exclusive rights to any content created within or posted to
the site:

For content that is covered by intellectual property rights, like pho‐
tos and videos (IP content), you specifically give us the following
permission, subject to your privacy and application settings: you
grant us a non-exclusive, transferable, sub-licensable, royalty-free,
worldwide license to use any IP content that you post on or in con‐
nection with Facebook (IP License).

In doing this, we take the power away from the user and assert own‐
ership over the content they have created. Though there is a busi‐
ness case for this, it comes at a potential cost to our users. The
creator of the World Wide Web, Tim Berners-Lee, has spoken out in
favor of user-owned data, stating that “the data that [firms] have
about you isn’t valuable to them as it is to you.”

If we take this perspective, we should aim to open user data to our
users and provide a means of exporting it from our sites in an open
format.

In his article “Rights to Your Data and Your Own Uber ‘God’ View,”
Miles Grimshaw suggests adapting a Creative Commons-style

48 | Chapter 5: Preserving User Data

https://www.facebook.com/terms.php
http://bit.ly/2fofpXN
http://bit.ly/2emArcv

license for personal data, which would be adopted by services col‐
lecting this data:

You are free to:
Download—free access to your raw data in standard file formats
Share—copy and redistribute the data in any medium or format
Adapt —remix, transform, and build upon the data
Under the following terms:
Attribution—You must provide a sign-up link to the application

The (since acquired) start-up Kifi had a forward-thinking approach
to user data, stating in a blog post that:

Any service that manages your data has an implicit contract with
users: you give us your data and we’ll organize it, but it’s still your
data; we are just stewards for it. At Kifi, one way we try to fulfill our
end of this contract is by making sure users can export their data
for offline use (or so they can import it into another service).

These ideas are not limited to start-ups or small services. In 2012
Twitter introduced the ability to download an archive of your
Tweets, giving users permanant access to their Twitter content as
well as the potential ability to import it into another service. Google
also allows users to download an archive of the data created with
any of its services, including the ability to easily store the archive in
common file-sharing applications such as Dropbox, Google Drive,
and Microsoft OneDrive.

By giving our users access to their data, we can be better stewards of
that information. This aids us in creating long-lasting user content
and opens up the potential for users to adapt and use their data in
novel and interesting ways. Most importantly, by providing access to
user data we are able to give ownership of the data our users create
directly to the users.

Deleting User Data
An inevitable reality is that some users will want to stop using the
services we build. In many cases, these users may simply allow their
accounts to decay, but other users will explicitly seek to delete their
accounts and associated information. When a user does delete his
account, we should also delete it from our databases, rather than
simply hiding the user’s content within our site or application.
Doing so will be more in line with user expectations and and

Deleting User Data | 49

http://bit.ly/2fSwOJj
http://bit.ly/2fz4g6I
http://bit.ly/2fz4g6I
http://bit.ly/2ey8caQ

ensures that in the case of a data breach previously deleted accounts
won’t be at risk.

Archiving and Graceful Shutdown
At the beginning of this chapter, we looked at a few web application
shutdowns and the resulting loss of user data. According to the Uni‐
ted States Small Business Administration, nearly 40% of small busi‐
nesses fail after three years. In the world of tech start-ups, that
number is significantly higher, as reportedly 9 out of 10 start-ups
fail. And this doesn’t take into account web applications that are
acquired or owned and closed by large companies.

The group Archive Team works to catalog and preserve digital his‐
tory, but also keeps a Deathwatch of sites risking shutdown and pro‐
vides advice for individuals on backing up our data. Though this is a
wonderful project, we cannot assume that users will back up their
data. When our services are closing down, we can do so gracefully.
For example, the music streaming service Rdio closed its doors in
2015, but in doing so offered a farewell that included the ability for
users to download CSV files of things such as their playlists and
saved music to be imported into another service. As the
site Hi.co shuttered, its founder Craig Mod committed to keeping
the archive on the web for the next 10 years, making individual con‐
tributions exportable and producing five nickel-plated books of the
site to be preserved. In an article about the shutdown, Mod wrote:

At the same time we understand the moral duty we took on in cre‐
ating Hi.co — in opening it up to submissions and user generated
content. There was an implicit pact: You give us your stories about
place, and we’ll give you a place to put your stories. This was not an
ephemeral pact.

Though we may not choose to nickel-plate our own services’ con‐
tents, providing exports will ensure that users are able to preserve
their data if they choose to do so.

50 | Chapter 5: Preserving User Data

http://bit.ly/2g1r3LX
http://bit.ly/2g1r3LX
http://bit.ly/2eNQDSQ
http://bit.ly/2eNQDSQ
http://bit.ly/2ey9W46
http://bit.ly/2eTrmDx
http://bit.ly/2eNVovo
http://hi.co/
http://bit.ly/2eFPnhi

Further Reading
• “With Great Data Comes Great Responsibility” by Pascal Raabe
• “Archiving a Website for Ten Thousand Years” by Glenn Fleish‐

man
• “Preserving Digital History” by Daniel J. Cohen and Roy Rose‐

nzweig

Further Reading | 51

http://bit.ly/2eFYsXr
http://theatln.tc/2eNUZJn
http://bit.ly/2fzbmIg

CHAPTER 6

Conclusion

Thank you for taking the time to read this installment of the Ethical
Web Development series. In this title, we’ve explored the value of
respecting users’ privacy, using HTTPS, following security best prac‐
tices, and data ownership. My hope is that you now feel empowered
and excited to build applications in this way.

If during your reading you have come across things that you think
are missing or could be improved, I would encourage you to con‐
tribute to the book. This title is available as open source and contri‐
butions can be made by:

• Contributing directly to the GitHub repository with a pull
request

• Creating an issue in the book’s GitHub repository
• Reaching out to me through email or Twitter

Twenty percent of the proceeds from each Ethical Web Development
title will be donated to an organization whose work has a positive
impact on the issues described. For this title, I will be donating to
the Electronic Frontier Foundation (EFF). The EFF “champions user
privacy, free expression, and innovation through impact litigation,
policy analysis, grassroots activism, and technology development.”
The work and research of the EFF was instrumental to the writing of
this report.

If you are interested in supporting the organization’s work, please
consider getting involved at the EFF website.

53

https://github.com/ascott1/ethical-web-dev
https://github.com/ascott1/ethical-web-dev/issues
mailto:adamdscott@protonmail.com
https://twitter.com/adamdscott
https://www.eff.org

This title is the third in a series of digital reports I am authoring on
the subject of ethical web development. Other titles in the series
include Building Web Apps for Everyone and Building Web Apps that
Work Everywhere. You can learn more about the series at the Ethical
Web Development website.

54 | Chapter 6: Conclusion

http://oreil.ly/2fG7yEw
http://oreil.ly/2fmRTuc
http://oreil.ly/2fmRTuc
https://ethicalweb.org
https://ethicalweb.org

Contributors

About the Author
Adam D. Scott is a developer and educator based in Connecticut.
He currently works as the development lead at the Consumer Finan‐
cial Protection Bureau, where he leads a team of open source devel‐
opers. Additionally, he has worked in education for over a decade,
teaching and writing curriculum on a range of technical topics.
Adam’s first book, WordPress for Education (Packt), was published in
2012. His video course, Introduction to Modern Front-End Devel‐
opment, was published by O’Reilly in 2015. This is the third title in a
series on the ethics of web development published by O’Reilly.

Technical Reviewer
Judith M. Myerson is a systems architect and engineer. Her areas of
interest include enterprise-wide systems, database technologies, net‐
work and system administration, security, operating systems, pro‐
gramming, desktop environments, software engineering, web
development, and project management.

Other Contributors
The following people have graciously contributed feedback and
improvements:

• Meg Foley was the editor.
• Eric Mill contributed a thoughtful review and feedback on the

HTTPS chapter.
• Jonathan Crane contributed several typo fixes.

Contributions and suggestions have also been made to the Ethical
Web Development site and the core principles of ethical web devel‐
opment. Those contributions are stored at ethicalweb.org/
humans.txt.

https://konklone.com/
https://ethicalweb.org/humans.txt
https://ethicalweb.org/humans.txt

	O’Reilly Web Platform
	Copyright
	Table of Contents
	Preface
	What Are Ethics?
	Professional Ethics

	Intended Audience

	Chapter 1. Introduction
	Our Responsibility

	Chapter 2. Respecting User Privacy
	How Users Are Tracked
	What Does Your Browser Know About You?
	Do Not Track
	Detecting Do Not Track
	Respecting Do Not Track
	Sites that Respect Do Not Track

	Web Analytics
	De-identification
	User Consent and Awareness
	Creating a Do Not Track Policy

	Further Reading

	Chapter 3. Encrypting User Connections with HTTPS
	How HTTPS Works
	How the TLS Connection Works

	Why Use HTTPS
	User Privacy and Security
	Site Authenticity
	Browsers Deprecating HTTP
	Improved Search Rankings

	Implementing HTTPS
	Let’s Encrypt
	Other Certificate Options

	Other Considerations
	Redirect HTTP to HTTPS
	HTTP Strict Transport Security
	Mixed Content and Relative URLs
	Secure Cookies

	Conclusion
	Further Reading

	Chapter 4. Securing User Data
	Building on a Strong Foundation
	OWASP Top 10
	Secure User Authentication
	Creating Our Own Login System
	OAuth 2.0
	Password Strength
	Multifactor Authentication
	Other Types of Authentication

	Encrypting User Data
	Sanitizing and Validating User Input
	Cross-Site Request Forgery Attacks
	Security Headers
	Content-Security-Policy (CSP)
	X-Frame-Options
	X-XSS-Protection
	X-Content-Type-Options
	Checking Security Headers

	Security Disclosures and Bug Bounty Programs
	Conclusion
	Further Reading

	Chapter 5. Preserving User Data
	Data Ownership
	Deleting User Data
	Archiving and Graceful Shutdown
	Further Reading

	Chapter 6. Conclusion
	Contributors
	About the Author
	Technical Reviewer
	Other Contributors

